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The derivation of Planck's radiation law can be considered as a transformation 
of a thermodynamic relation for black-body radiation into a fundamental relation 
in which the error law is the negative binomial distribution. In both limiting 
frequency ranges it transforms into Poisson distributions; in the Wien limit, it 
is the distribution of the number of photons, whose most probable value is given 
by Boltzmann's expression, while in the Rayleigh-Jeans limit, it is the distribution 
of the number of Planck oscillators. In the general case, they are Bernoullian 
random variables. In the Rayleigh-Jeans limit, the probability of determining 
the number of oscillators in a given frequency interval for a fixed value of the 
energy can be inverted to determining the probability of the energy for a fixed 
number of oscillators. The probability density is that of the canonical ensemble. 

1. T H E R M O D Y N A M I C S  OF BLACK-BODY R A D I A T I O N  

It is always in t r iguing to wonder  if a great scientific discovery could 
have been  overlooked had  the discoverer used all the knowledge that was 
avai lable  at the time. Alternat ively,  knowing  too much  can prevent  the step 

that  is necessary to break with the past. A case in point  is Planck 's  (1900) 
discovery of the formula  of b lack-body radiat ion.  When  he wrote down his 
formula ,  he was not  at all concerned  about  the fact that it contradic ted the 

law of equipar t i t ion  in all bu t  the long-wavelength  limit. He p robab ly  did 
not  know the law existed (Klein,  1977). Surely, Lord Rayleigh (1905) was 

well aware of the law of equipar t i t ion ,  but  could not  pass j u d g e m e n t  on 
Planck 's  formula  because he could not  follow its derivation.  It was Einste in  
(1905), several years afterward,  who fully apprecia ted the u n d e r m i n i n g  of 
the laws of  classical physics that went into Planck 's  der ivat ion of the 
rad ia t ion  formula.  

IUniversitS. degli Studi, Camerino 62032 (MC), Italy. 
1379 

0020-7748/90/1200-1379506.00/0 �9 1990 Plenum Publishing Corporation 



1380 Lavenda 

At the time of Planck's derivation, several facts about black-body 
radiation were known. Boltzmann had devised a proof  of  Stefan's law, 

~.~ = b V T  4 ( l )  

based on a Carnot  cycle in which radiation played the role of  the working 
substance. Expression (1) relates the (average) energy 0 to the fourth power 
of  the absolute temperature T, where V is the volume and cb/4 is the 
Stefan-Boltzmann constant, with c the velocity of  light in vacuum. 

It was also known that radiation, like aerial vibrations, exerts a pressure 
equal to one-third the energy density 

p = a/3  (2) 

Boltzmann had assumed (2) by reasoning that the pressure in any particular 
direction should only be one-third of  the energy density because space is 
isotropic. Introducing these two equations of  state into the Euler relation, 

1 + 2  
s = -  ti (3) 

T T 

leads at once to the fundamental  relation 

S = 4 b l / 4 u 3 / 4  (4)  

for the entropy density. 
Although (4) is thermodynamical ly admissible, since the entropy is 

extensive and a concave function of the energy and volume, it is not the 
most " fundamenta l"  relation there is for the entropy. In order for the 
relation to be the most fundamental  one, the entropy must be expressed as 
a logarithm, like that of  an ideal gas 

s = ~ l og ( t i ~  b) (5) 

where a is the (average) particle density. 
Considering s as a function of a only, the law of error leading to the 

average energy density as the most probable value of the energy measured 
is 

f ( u )  = exp{s(u) - s (a)  - s ' (a)(u - a)} (6) 

where the prime means differentiation. The Gaussian error law (6) can be 
written in the canonical form 

f ( u  [/3) = e - r  (7) 

which shows that it belongs to the exponential family where 

s'(a) = ~  (8) 
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is the inverse temperature in energy units where Boltzmann's constant is 
unity. 

For continuous values of u, (7) is the probability density of the canonical 
ensemble. Moreover, it has precisely the form of  Neyman's factorization 
theorem for the existence of a sufficient statistic, viz., the sample mean 
energy is a sufficient statistic for estimating the inverse temperature (Mandel- 
brot, 1962). The norming factor ~(/3) is known as the partition function. 
The prior density, or structure function 12(u) completely determines the 
mechanical structure of  the isolated system before it is converted into a 
closed system by sampling the energy. At most, l ) (u)  increases only as a 
finite, fixed power of u (Blanc-Lapierre and Tortat, 1956), which requires 
a fundamental relation of  the form (5). This is not fulfilled by the funda- 
mental relation of black-body radiation (4), which should have immediately 
been interpreted as implying the existence of another, more fundamental 
relation of  the form (5). 

2. STATISTICS OF BLACK-BODY RADIATION 

Planck's derivation of  his radiation formula can be shown to be an 
attempt to convert the fundamental relation (4) into a logarithmic form so 
that it would correspond to a law of error for an extensive variable. Planck 
had two other pieces of  information: The first was Wien's displacement law 

t7~(/3) =/'3g(/3u) (9) 

where ~v dv is the energy density of radiation lying in the frequency interval 
from v to v + dr. Here g ( f l v )  is a function of  the single variable flu, so that 
the spectral distribution (9) is determined for all temperatures once it is 
known for a single temperature. This function must be such that when (9) 
is integrated over all frequencies, it reproduces the Stefan-Boltzmann 
law (1). The second piece of  information was the Wien formula 

t~(~Wien)(fl) = 0//'3 exp ( - - f ly / ' )  (10) 

for the spectral distribution, where 0/ and y are constants. 
Assuming that the Euler relation (3) is valid for each mode of the 

electromagnetic field (Lavenda and Dunning-Davies, 1990b), we have 

s(tT.) = fl(ti~ +p . )  (11) 

for each mode l,. The pressure exerted by a mode p. can be determined by 
solving Wien's formula (10) for/3 

s (u~)=/3  = ~//" ~ (12) 
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and integrating it to obtain 

wl ..... a~ [ / a~ \ ] 
s t u ~ ) = - - ~ [ l ~  - 1  a (13) 

From (12) it follows that Wien's law only holds for weak intensities, 12~ < au 3. 
Comparing (11) and (13), we obtain 

pWie, = t~ (14) 
/33,v 

which, when integrated over all frequencies, gives the radiation pressure 
(2). The Wien pressure per mode as a function of frequency is shown in 
Figure 1. 

Expression (13) is a fundamental relation and should correspond to a 
law of error identifying the average value of the energy as the most probable 
value of the energy that is measured. On substituting the entropy (13) into 
the error law (6), we obtain the expressions 

( u )  - ~  
f~(u) = \ow3 ] e "/'~ (15) 

and 
2 

log •(/3) = av  e_eV ~ (16) 
Y 

for the structure function and logarithm of the partition function, respec- 
tively. Hence it appears that we are no closer to a fundamental relation for 
black-body radiation than our original relation, (4). 

The structure function (15) looks like Stirling's approximation for a 
factorial if only u could somehow be treated as a discrete variable. The 
logarithm of  the partition function (16) would then be some average number 
density. In fact, by defining 

~ - -  ft,,/yv, n "----u/yu, m ~ - - a v 2 / y  (17) 

pressure 

frequency 

Fig. I. The Wien  pressure  as a funct ion  of  the frequency.  
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we can write the entropy density per mode (13) as 

W i e n / -  x mv ~ s ~n~) = log  (18) 

provided n is sufficiently large so that Stirling's formula can be applied. 
Now, the law of  error is (Lavenda, 1988) 

- n  
n u  

f ( n )  = n.T e x p ( - ~ , )  (19) 

which is precisely the Poisson distribution. The revolutionary step is con- 
tained in (17)-- the  assumption of discrete "pa r t i c l e s" - -and  its justification 
resides in the derivation of  Poisson distribution as the law of error identifying 
the average number  o f"par t i c les"  as the most probable value of the quantity 
measured. 

Further support  would have been forthcoming had (17) been introduced 
into Wien's formula (10) to obtain 

t~ = r ~  e ~s~ (20) 

where e , =  yr.  Expression (20) is the most probable "distr ibution" of  
Boltzmann statistics, where ff~ is the most probable,  or equivalently, average 
number  of  particles of  the group v that is found in r ~  cells. Equipartit ion 
of  energy surely cannot be applied locally to each mode. Rather, the theorem 
of equipartition of energy applies to the average energy density 

t~ = 3a//3 (21) 

for a system with 6~ degrees of  freedom per unit volume. 
In addition, the first relation in (17) could have been introduced in the 

Wien expression for the pressure per mode (14), which would have resulted 
in 

p~ = ~ . / ~  

which is the equation of  state of  an ideal gas. Integrating over all frequencies 
gives/3p = if, which in view of  (21) gives the radiation pressure (2). 

Hence, had Planck at tempted to place Wien's formula on firm theoreti- 
cal ground, he would have certainly been led to the discreteness hypothesis 
contained in (17) and found that its justification was simpler than the path 
he was to follow, since it involved Boltzmann statistics. Planck, however, 
was not aware of  the limiting nature of  the Poisson distribution and it was 
not apparent  that (20) is only valid under the condition that ff~ << r~.. This 
was to come out of  the experimental investigations of Rubens and Kurlbaum, 
who showed that Wien's formula (10) broke-down in the far-infrared region, 
where a,  oc T, in accordance with the law of equipartition of energy. It is 
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rather ironic that quantum theory was discovered only after "classical" 
deviations from the quantum regime had been observed in the far infrared. 

The short-wavelength regime of black-body radiation points to the 
discreteness of "quanta"  of  energy, 

t~v = t~e, (22) 

they obey "classical" or Boltzmann statistics. This was emphasized in 
Einstein's (1905) paper on light quanta. It is precisely in the long-wavelength 
regime, where the law of equipartition of energy is obeyed, that the statistics 
is nonclassical. It is well known that Planck worked from the expression 
for - (02s /O~)  -1 in which he added a quadratic term in the energy, and 
integrating once and using the second law, he obtained his celebrated 
formula. In order to place his formula on firm theoretical ground, he had 
to take recourse to Boltzmann's probabilistic formulation of the entropy. 
We will proceed in a way which utilizes actual probability distributions 
rather than binomial coefficients. 

Boltzmann statistics, like the Poisson distribution, is a limiting form 
that is valid in a well-defined limit. That limit was unknown to Planck at 
the time and it took another quarter of a century before it became clear 
what was happening in the passage to that limit. Historically, the Poisson 
distribution was known as "Poisson's limit law" to which the binomial 
distribution converges in the limit as the number of Bernoulli trials increases 
without limit while the probability of success tends to zero in such a way 
that their product  is of moderate magnitude. This, together with the particle 
nature that emerges in the Wien limit, could have led Planck to explore 
the possibility of obtaining the actual probability distribution. However, 
Boltzmann's theory relating the entropy to what Planck later called the 
" thermodynamic probability," in order to distinguish it from a real probabil- 
ity distribution, does not deal with probability distributions, so Planck, 
following Boltzmann, could not have imagined the connection. 

Classically, the probability that a "particle" is present is given by the 
Boltzmann factor q = e-~% The probability of there not being one is simply 
p = ( 1 -  e -~- ) .  The probability that there are n particles is given by the 
geometric distribution (Planck, 1932) 

f ( n ) = e  -I" l ) ~ ( 1 - e  ~%) (23) 

which is valid for any mode in the frequency range between v and l,+ dr. 
Now suppose we have rh~ oscillators lying in this frequency interval. Since 
each of these oscillators is independent (Planck's assumption of "natural 
radiation"), the moment generating function will be G~"(z), where 

G ( z ) =  pz 
1 - qz 
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is the moment generating function of the geometric distribution (23). On 
the strength of the binomial series expansion, 

+: 1) qz,  ( 1 - q z ) - ' ~ =  2 ~ 

we have 

l)..q 
[ k - l ~  ,~ k ,~ k 

= ~ ~r~ _ 1 ]  p ~ q -  "z (24) 
k = r ~  v 

Therefore, the probability of finding n indistinguishable particles among 
the rfi~ oscillators with empty oscillators being admissible is given by the 
negative binomial distribution (Lavenda and Figueiredo, 1989) 

f (n)  = ( rh~ + n - 1 )  (25) 

If we impose the constraint that particle number can never be inferior to 
the number of oscillators, the negative binomial distribution (25) is replaced 
by the Pascal distribution, 

( n - 1 ) e - ( " - ' ~ ) t 3 ~ ( 1 - e - ~ Q ~ v , n > - f f t ~  (26) f ( n )=  r ~ - I  

as shown by formula (24). The radiation laws that are derived from 
(25) and (26) differ by an integral zero-point energy term (Lavenda and 
Figueiredo, 1989) and this excludes the high-frequency end of the spectrum 
in (26). 

Casting the negative binomial distribution (25) as the Gaussian error 
law, 

f (n)  = exp{s(n) - s ( ~ )  - s ' (~)(n - ~)}  

gives the expression 

s P l a n c k ( f i v )  ~-" ~ / ~  - -  Yr/t, log(1 - e - ~ )  (27) 

for the entropy density per mode. Comparing (27) with the Euler relation 
(11) determines the pressure 

p P lanck  __ f f /~  l o g ( l -  e -t% ) (28) 

which goes over into the Wien expression (14) for/3e~ >> 1. The pressure as 
a function of frequency is shown in Figure 2. 
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pressure 

frequency 

Fig. 2. The Planck pressure as a function of the frequency. 

Since -p~ is equal to the Helmholtz free energy density per mode, 
differentiating -/3p~ with respect to/3 yields 

- P l a n c k  f f l ~ E u  u ~ - (29) 
e ~% -- I 

Then, consulting the first definition in (17) leads to 

- P l a n c k  - -  ?~/u  (30) 
n v e ~% - 1 

which is Planck's "distribution." In the limit/3e~ >> 1, it transforms into the 
Boltzmann distribution (20). 

Solving (29) for/3 and either integrating the second law (8) or substitut- 
ing it directly into (27) gives 

s (u~) = - - l o g  +rh~ log (31) 

which, according to (17), can be expressed in terms the average particle 
density as 

+ 

Planck, having his expression for the spectral distribution in hand, 
went in the opposite direction: He solved (29) for /3 and integrated to 
get (31). Then, in order to use Boltzmann's principle, he had to count the 
number  of  complexions. This forced Planck to "treat  [fly] not as a con- 
tinuous, infinitely divisible quantity, but rather as composed of an integral 
number  of equal finite parts"  (Planck, 1900). 

It is rather interesting to note that Planck ~dentified the entropy with 
the logarithm of 
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where n is a random variable. In order to compare it with his expression 
(31), he had to replace n by ri~. This has the effect of maximizing the 
stochastic entropy density s(n) to give the thermodynamic entropy density 
s(t~v). It is precisely the fact that the average value is also the most probable 
value that is what is behind the success of Planck's analysis. 

3. PARTICLES VERSUS OSCILLATORS 

Consider a sequence of balls separated by bars (Ehrenfest and Kamer- 
lingh Onnes, 1914). Two consecutive bars indicate a cell. I f  there are n balls 
and m cells, there will be m + 1 bars, but since the first and last bar must 
always be fixed, only m - 1  are movable. These bars together with the n 
balls can appear in any order, so that the number of  distinguishable distribu- 
tions equals the number of  ways of selecting n places out of m + n -  1, 
namely the binomial coefficient in (25). Denote by ~ = m +  n the total 
number of balls and cells. For a fixed number of cells, ~ will vary because 
n does. But now suppose that we fix ~ and allow m to vary; in other words, 
the numbers of cells and balls may vary, but in such a way that their sum 
remains constant. 

First, suppose that m >> n. Eliminating m in favor of ~ in (25) gives 

f ( n )  = ( : ) e - " ~ ( 1 - e - ~ )  ~" (33) 

since ~ >> 1. Expression (33) is the binomial distribution, which, in the limit 
as e - ~  --> 0 and r/--> o0 such that their product 

~ = r/e -13~ (34) 

is a constant of moderate size, transforms into the Poisson distribution (19). 
This is the Wien limit, where (34) is essentially expression (20). 

Second, consider the opposite limit, n >> rn. Eliminating n may in favor 
of ~1 in (25) gives 

f ( m ) = ( ~ ) e  (" m)~(1 - e-~%)" (35) 

which is again a binomial distribution. In the limit as ( 1 -  e - ~ )  ~ f e ,  ~ 0 
and r/-> oo such that 

fine,, = r~. (36) 

is a constant of moderate magnitude, the binomial distribution (35) trans- 
forms into the Poisson distribution 

f (m)  =-~.T e ~ (37) 
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whose entropy density is 

saJ(r~,) = log(  "'" ~ (38) 
\r~v!/ 

Expression (36) is essentially the law of equipartition of energy and 
(38) has been derived from the distribution (35) in the limit/~e~<< 1. 

The physical picture which emerges is that of an entity which can be 
in one of two forms: either a particle or an oscillator. These are Bernoullian 
random variables which are governed by the binomial distributions (33) 
and (35), respectively. In both the Wien and Rayleigh-Jeans limits, one of 
the two forms predominates. In the former (latter) limit, the appearance of 
a particle (oscillator) is a rare event which is governed by the "law of small 
numbers" or the Poisson distribution (19) [(37)]. The granularity in the 
number of  oscillators appears in the Rayleigh-Jeans limit in exactly the 
same way that the granularity in the number of photons occurs in the Wien 
limit. 

We may use an argument (Lavenda and Dunning-Davies, 1991), similar 
to that used by Einstein (1905) in support of the particle nature of  light in 
the Wien limit, to show that the same holds true for the oscillators in the 
Rayleigh-Jeans limit. We want to determine the probability that in a small 
volume V of a much larger volume Vo in which there are No gas particles 
which are uniformily distributed, there will be exactly N particles. This is 
given by the binomial distribution 

___V~ NoN 
f (N )=(NN~  (39) 

In the limit as No ~ oc and Vo ~ oo such that their ratio 

No/Vo = -N / V (40) 

is finite, where ~r is the average number of particles in the volume V, the 
binomial distribution (39) transforms into the Poisson distribution 

]•N 
f ( N )  = - -  e -~  

N!  

whose entropy is (Lavenda and Dunning-Davies, 1991) 

[ ] S ( N )  = _~r  log - 1 (41) 

With the aid of the homogeneity condition (40), the entropy (41) can be 
written as 
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In the Wien limit, the entropy (42) must be the same as Vo times the 
entropy density (18); this requires 

N / N o  = V~ Vo = fly/rh~ (43) 

and 

-N = ~Vo (44) 

The average number of  particles in the subvolume is thus identified with 
the average number of photons present in the cavity. Introducing (44) into 
(43) gives No = r~Vo, which associates the total number of particles with 
the number of modes per unit frequency interval. 

Alternatively, in the Rayleigh-Jeans limit, (42) must coincide with Vo 
times the entropy density (38); this demands 

N / N o  = V~ Vo = r ~ l ~  (45) 

and 

= r~Vo (46) 

The average number of particles in the subvolume is now to be identified 
with the average number of  oscillators per unit frequency interval in the 
cavity. Eliminating _~r between (45) and (46) leads to No = ~vVo, which 
associates the total number of particles with the number of  photons per 
unit frequency interval in the cavity. It is quite evident from (44) and (46) 
that the roles of the photons and oscillators have been interchanged. 

The binomial distribution (35) furnishes two expressions for the 
entropy: the statistical entropy density, or the maximum of the logarithm 
of  the binomial coefficient, 

s(fft~) = - r / l o g  - r~  log ( ~  ~ - - ~  m~ ) 
\ my / 

and the thermodynamic entropy, 

s ( r~ )  = flu - rh~ log(e ~% - 1) (47) 

where the total energy, ~e~ = u, is constant. Equating their derivatives with 
respect to r~,, gives the average number of oscillators in the frequency 
interval dv as 

rh~ dv = r/(1 - e -~%) dv (48) 

which is equivalent to 30. Comparing (47) to the Euler relation (11) gives 

rh~ log(e~  ~ _ 1) (49) p~ = - - ~  

for the pressure, which is shown in Figure 3. 
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pressure 

Fig. 3. 

frequency 

The low-frequency pressure as a function of frequency. 

The area under the curve is one-third the total energy density. The 
pressure curve shown in Figure 3 stands on par with the pressure distribution 
shown in Figure 1. The underlying probability distributions are both discrete 
and describe, respectively, the distribution of the number of oscillators and 
particles in the low- and high-frequency ranges of the spectrum. The energy 
density per mode is an unbounded function of the frequency, while the 
pressure per mode passes through a maximum and variishes at 

1 
Vth = ~ log 2 (50) 

which is the threshold frequency that separates the wave from the particle 
nature of light (Lavenda and Figueiredo, 1989). Numerically, v = 0.14u . . . .  
where /'max is the frequency at which ~ is maximum. For a temperature of 
600 K, Vth lies on the border between the far and near infrared. This threshold 
frequency is related to the maximum uncertainty of finding a photon in a 
given mode (Brillouin, 1962), 

1 e -t3y~'" = 1 - e -~y'h = 

Integrating the pressure (49) over frequencies up to Vth gives the radiation 
pressure (2). 

4. THE CLASSICAL LIMIT 

In the low-frequency limit, 3e~<< 1, the exponential in (28) may be 
expanded to first order; using the law of equipartition of energy 

fla~ = r~  (51) 

leads to 

pRj = _ fft_Z~ log ( rh,'e~ ) 
' 13 \ a ~ /  

(52) 
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The Rayleigh-Jeans limit is the high-intensity limit fi~> Oil/3 which is 
required in order that the pressure per mode (52) be positive. Introducing 
both equations of state (52) and (51) into the Euler relation (11) gives the 
fundamental relation 

l sRJOi.) = r~  log + 1 

- l  - o g l  j (53) 

provided rh~ is large enough to permit the use of Stirling's approximation. 
Expression (53) relates the entropy to the logarithm of the phase volume 
occupied by the system. With the aid of (22), it can be written as (38). A 
comparison with the Wien entropy (18) shows that rfi, and tL have traded 
roles. There is no "classical" analog to such an expression; nevertheless, it 
is a direct consequence of  the "classical" limit where equipartition of energy 
(51) applies. By contrast with the Wien limit, "particle" discreteness is 
replaced by "mode"  discreteness. Moreover, Planck's (1899) calculation of 
the number of electromagnetic modes per unit volume having frequencies 
in the interval between l, and ~,+ du, rh~ dz, = (87"/'/.'2/C 3) du should be inter- 
preted as the average  number of oscillators in this interval. 

Introducing (53) into the error law (6) leads to 

f ( u )  = (/3u)m -t~u - -  e ( 5 4 )  
rn! 

But this cannot be the law of error for the energy, because it is not 
normalized. Rather, it is the Poisson distribution (37) where the scale 
parameter /3 is the expected number of oscillators in a given frequency 
interval per unit energy. The existence of  another probability distribution 
is implied by the fact that/3 is not  the scale parameter for the distribution 
(54) (Lavenda and Dunning-Davies, 1990a). In Lavenda and Dunning- 
Davies (1990a) it was assumed that the number of degrees of  freedom was 
a random number Whose distribution is (54). Here, we have derived it from 
the error law (6) in the long-wavelength or high-intensity limit of black-body 
radiation. 

The extension-in-phase, or phase space volume, is specified by the 
energy u (Gibbs, 1902). If the degrees of freedom are "well mixed," their 
distribution, for a fixed value of the energy u, is given by the Poisson 
distribution (54) in the long-wavelength limit of black-body radiation. 
Suppose we want to determine the phase volume that contains exactly 2 r~  
degrees of  freedom. This can be done b y v a r y i n g  the energy u until 
the phase volume contains exactly this number of degrees of freedom. The 
energy ~ of  the phase volume that contains 2rfi~ degrees of freedom is the 
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required random variable. The probability that the phase volume will contain 
less than 2rh~ degrees of freedom is 

,~ _, (13u)j f~o (13u,)~ -,  
Pr(~> u)=  Y, -ji e ~ =  j ~ _ - ~ . ~  1 3 e - ~ ' d u  ' 

j=O u 

where the second equality is established by fits-1 integration by parts. 
Since the probability Pr(ff -< u) = 1 - Pr(t~ > u) is the cumulative distribution 
function F(u113) of the random variable ~, the probability density is 

f ( u  [ fl) - OF_ (13u) '~-~ 13 e -~u (55) 
ou r(r~v) 

where F is the gamma function. Thus, the random variable a has a probability 
density function given by (55), which is a chi-square distribution with 
2r~, degrees of freedom. This is precisely Gibbs' density of the canonical 
ensemble (7). 

ACKNOWLEDGMENTS 

This work was supported in part by contributions from the Ministry 
of Public Education (MPI) and the National Science Council (CNR). 

REFERENCES 

Blanc-Lapierre, A., and Tortat, A. (1956). In Proceedings of the Third Berkeley Symposium on 
Mathematical Statistics and Probability, Vol. II1, University of California Press, Berkeley, 
pp. 145-170. 

Brillouin, L. (1962). Science and Information Theory, 2nd ed., Academic Press, New York, p. 189. 
Ehrenfest, P., and Kamerlingh Onnes, H. (1914). Proceedings Academy of Amsterdam, 17, 870. 
Einstein, A. (1905). Annalen der Physik, 17, 132 [transl., A. B. Arons and M. B. Peppard, 

American Journal of Physics, 33, 367 (1965)]. 
Gibbs, J. W. (1902). Elementary Principles in Statistical Mechanics, Yale University Press, N e w  

Haven, p. 23. 
Klein, M. J. (1977). In History of Twentieth Century Physics, Academic Press, New York, 

pp. 1-39. 
Lavenda, B. H. (1988). International Journal of Theoretical Physics, 27, 1371. 
Lavenda, B. H:, and Dunning-Davies, J. (1990a). International Journal of Theoretical Physics, 

29, 85. 
Lavenda, B. H., and Dunning-Davies, J. (1990b). International Journal of Theoretical Physics, 

29, 509. 
Lavenda, B. H., and Dunning-Davies, J. (1991). Entropy paradoxes, submitted for publication. 
Lavenda, B. H., and Figueiredo, W. (1989). International Journal of Theoretical Physics, 28, 391. 
Lord Rayleigh (1905). Nature, 72, 243. 
Mandelbrot, B. (1962). Annals of Mathematical Statistics, 33, 1021. 
Planck, M. (1899). 0ber  irreversible Strahlungsvorgfinge. FiJnfte Mitteilung, Berliner Berichte, 

440. 
Planck, M. (1900). Verhandlung der Deutsches Physikalische Gesellschaft, 2, 237. 
Planck, M. (1932). Theory of Heat, Macmillan, London, p. 268. 


